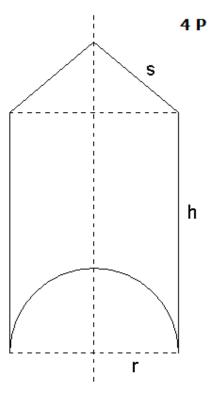
Pflichtaufgaben

Aufgabe 2010 P1:

Ein zusammengesetzter Körper besteht aus einem Zylinder mit aufgesetztem Kegel.

Aus diesem Körper wird eine Halbkugel herausgearbeitet (siehe Achsenschnitt).


Es gilt:

r = 3,0 cm (Radius des Zylinders)

 $h = 8,6 cm (H\"{o}he des Zylinders)$

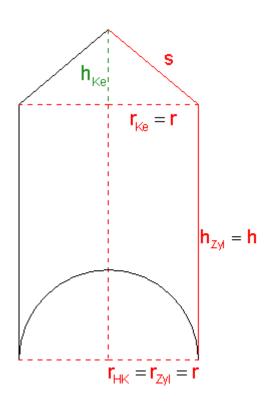
s = 3,8 cm (Mantellinie des Kegels)

Berechnen Sie das Volumen des Restkörpers.

Strategie 2010 P1:

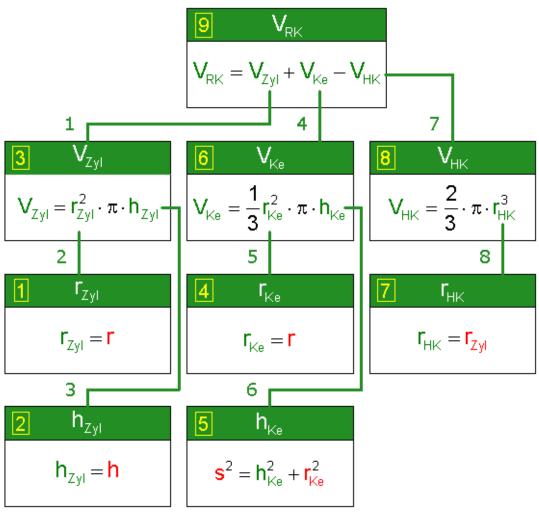
herausgearbeitete Halbkugel

Gegeben:


Gesucht: Zylinder mit aufgesetztem Kegel V_{RK}

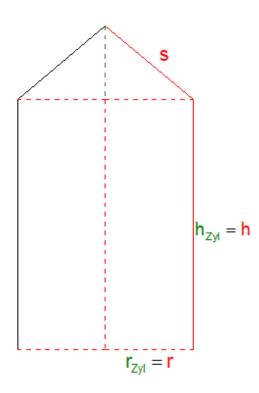
r = 3,0 cm

h = 8, 6 cm


s = 3,8 cm

Skizze:

Strategie 2010 P1:


Struktogramm:

Lösung 2010 P1:

1. Bestimmung des Zylinderradius rzyl:

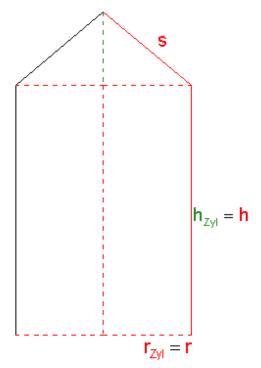
$$r_{ZyI} = r$$

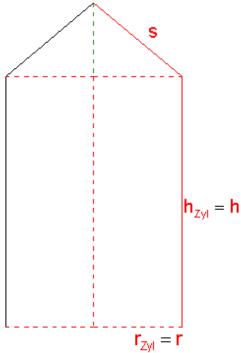
 $r_{ZyI} = 3 cm$

2. Bestimmung der Zylinderhöhe hzyl:

$$\boldsymbol{h}_{zyl} = \boldsymbol{h}$$

$$h_{Zyl} = 8,6 cm$$


3. Berechnung des Zylindervolumens V_{Zyl}:


$$V_{zyl} = r_{zyl}^2 \cdot \pi \cdot h_{zyl} \quad \ \ \text{Formel Zylindervolumen}$$

$$V_{ZyI}=3^2\cdot\pi\cdot8,6$$

$$V_{Zyl} = 9 \cdot \pi \cdot 8, 6$$

$$V_{Zyl} = 243,16 \, cm^3$$

4. Bestimmung des Kegelradius r_{Ke}:

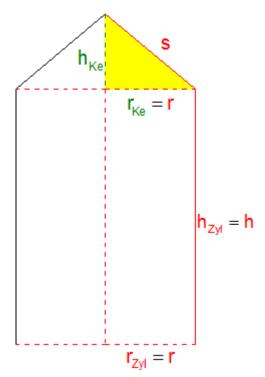
$$\mathbf{r}_{\mathsf{Ke}} = \mathbf{r}$$

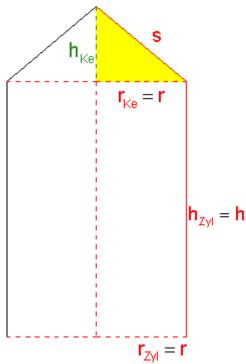
$$r_{Ke} = 3 cm$$

<u>5. Berechnung der Kegelhöhe</u> h_{Ke}:

$$\mathbf{s}^2 = h_{\text{Ke}}^2 + r_{\text{Ke}}^2$$

Pythagoras im rechtwinkligen gelben Teildreieck

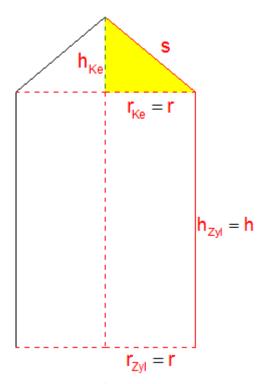

$$3,8^2 = h_{Ke}^2 + 3^2$$

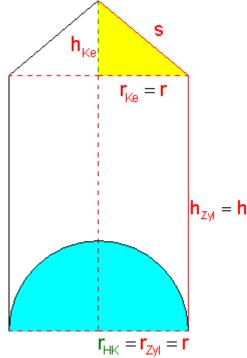

14, 44 =
$$h_{Ke}^2 + 9$$
 Seiten tauschen

$$h_{Ke}^2 + 9 = 14,44$$
 -9

$$h_{Ke}^2 = 5,44$$

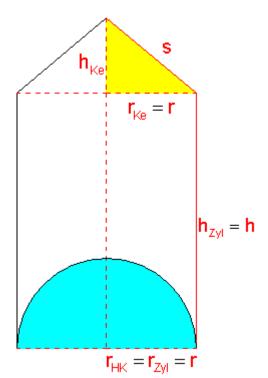
$$h_{Ke} = 2,33 \, cm$$


<u>6. Berechnung des Kegelvolumens V_{Ke}:</u>


$$\begin{split} &V_{\text{Ke}} = \frac{1}{3} \cdot r_{\text{Ke}}^2 \cdot \pi \cdot h_{\text{Ke}} &\quad \text{Formel Kegelvolumen} \\ &V_{\text{Ke}} = \frac{1}{3} \cdot 3^2 \cdot \pi \cdot 2,33 \\ &V_{\text{Ke}} = \frac{1}{3} \cdot 9 \cdot \pi \cdot 2,33 \\ &\underbrace{V_{\text{Ke}} = 21,96 \, \text{cm}^3} \end{split}$$

$$\mathbf{r}_{HK} = \mathbf{r}_{ZyI}$$

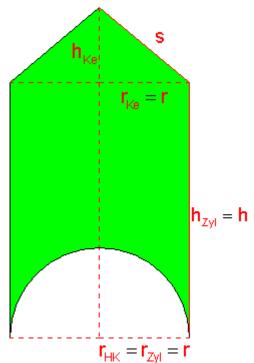
$$r_{HK} = 3 cm$$



8. Berechnung des Halbkugelvolumens V_{HK}:

$$\begin{split} V_{HK} &= \frac{2}{3} \cdot \pi \cdot r_{HK}^3 & \text{Formel Halbkugelvolumen} \\ V_{HK} &= \frac{2}{3} \cdot \pi \cdot 3^3 \\ V_{HK} &= \frac{2}{3} \cdot \pi \cdot 27 \end{split}$$

$$V_{HK} = 56,55 \, cm^3$$



9. Berechnung des Restkörpervolumens V_{RK}:

$$V_{RK} = V_{Zyl} + V_{Ke} - V_{HK}$$

$$V_{RK} = 243, 16 + 21, 96 - 56, 55$$

$$V_{RK} = 208,57 \, cm^3$$

